Självständighet eller ensamhet

Pedagogiken är orsaken till elevernas allt sämre mattekunskaper hävdar Åse Hansson vid Göteborgs universitet i en doktors-avhandling som läggs fram nu på fredag.
.

Åse Hansson hävdar att trenden av sjunkande resultat är starkt kopplad till 90-talets övergripande samhällstrend om ökad individualisering. Det må så vara, men jag tycker att hon (eller SR) blandar äpplen och päron här:

– Det trycktes mycket på att eleverna skulle bli självständiga och ta stort ansvar för sitt eget lärande, tänka och reflektera och värdera sina egna resultat.

Det blev mer självständigt arbete med matteboken och mindre lärarledning, och Åse Hansson hävdar att elevernas självständiga matematiklärande lett till sämre kunskaper.

Att självständigt arbete i matteboken utan lärarledning inte är bra tror jag att vi alla är överens om, men att eleverna tar ansvar för sitt eget lärande, tänker, reflekterar och värderar sina egna resultat i samspel med läraren kan väl ändå inte vara fel?
Kanske kan man säga att det inte är självständigheten som är boven i dramat, utan ensamheten?

Antagligen är det så Åse Hansson menar, men jag tycker ändå att det är värt att påpeka.

Länkar till andra bloggar om: , , , , , ,

Annonser

Om ChristerMagister

Bloggande lärare med fotointresse.
Det här inlägget postades i Debatt och politik, Pedagogik, skolpolitik och har märkts med etiketterna , , , , , , . Bokmärk permalänken.

32 kommentarer till Självständighet eller ensamhet

  1. Bertil Törestad skriver:

    Jag undrar bara: Hur gör en elev som ´tar ansvar för sitt eget lärande´? Jag blir lite trött på alla
    klyschiga uttryck utan klar substans av just den typen.

    • ChristerMagister skriver:

      🙂 Ja, det finns gott om dessa uttryck!

      Just det här kan väl betyda att eleven själv väljer vilken nivå h*n räknar på, att h*n själv säger till att h*n nog måste repetera multiplikationstabellen lite till eller att h*n helt enkelt ställer frågor när h*n inte förstår vad läraren menar.

      • Maths skriver:

        När är dom mogna för det? Och finns det elever som aldrig når den mognaden?

        • ChristerMagister skriver:

          När de är mogna för det är förstås väldigt individuellt och liksom i frågan om de någonsin når den mognaden starkt knutet till motivationen; vill de ens lära sig? Man tar ju knappast ett eget ansvar för något om man struntar i resultatet. Det är den ”inre motivationen” vi måste stärka om vi ska nå goda resultat på det här sättet.

  2. coolaliaz skriver:

    Lärarledningen har minskat i mängd, men det har säkert också elevens arbete med matteboken.
    Över huvud taget har elevens tålighet för repetitiv drill minskat. Man vill ha omedelbar belöning, precis som alla coola datorspel ger. Matematik är ett övningsämne där grunderna kräver en hel del tråkigt handarbete. Först då denna grund har lagts kan matten bli intressantare. Detta grundarbete är dock ofta inte avbockad då de kommer till gymnasiet.

    • ChristerMagister skriver:

      ”repetitiv drill” är ingenting jag går igång på direkt…

      Att räkna en massa tal i boken måste väl ge den mest omedelbara belöningen? Man får ju direkt veta, svart på vitt, om man har rätt eller inte.

  3. Bertil Törestad skriver:

    Menar du att tåligheten minskat under din levnad?!

  4. Mats skriver:

    Mycket konstigt och ytligt inslag som befäste förlegad polaritet!

  5. Vidi skriver:

    Här sitter elever i klassrummen och väntar, var för sig, på handledning,
    hjälp med mattetal de inte klarar. Ofta tar lektionen slut innan alla fått
    hjälp. Så här går det till i femton år, runt om i Sverige, och lärare och
    rektorer hyllar denna typ av undervisning. De borde
    få förklara sig.

    • ChristerMagister skriver:

      Vem hyllar denna typ av undervisning? Hitta dem och låt dem förklara sig…

      • Trofinios skriver:

        ”Att självständigt arbete i matteboken utan lärarledning inte är bra tror jag att vi alla är överens om, men att eleverna tar ansvar för sitt eget lärande, tänker, reflekterar och värderar sina egna resultat i samspel med läraren kan väl ändå inte vara fel?
        Kanske kan man säga att det inte är självständigheten som är boven i dramat, utan ensamheten?”

        I Silwa Claessons bok ”Spår av teorier i pratiken”, beskrivs en lärare som i ämnet naturkunskap arbetar konstruktivistiskt i piagesk anda, d v s barnen arbetar med problem självständigt och läraren går sedan runt till varje barn och diskuterar barnets resultat och insikter. En sådan dialog mellan ett barn och lärare beskrivs, och man inser hur oerhört givande dialogen är för elevens lärande. Men det finns en hake, den givande dialogen förutsätter ett visst tidsligt engagemang av läraren, vilket medför att endast ett fåtal sådana dialoger kan hållas under en lektion, varför en majoritet av eleverna aldrig ges möjlighet att diskutera med läraren. Claessons bedömning av läraren är i grunden negativ, alltför många av barnen lämnas åt sitt eget öde och deras engagemang sviktar ganska snabbt när inte läraren finns till hands och kan driva på dem och ge feedback.

        Att arbeta självständigt med problem och utifrån dem konstruera sin kunskap, delvis i samspel med läraren, har stöd i konstruktivismen, en teori som ofta förespråkats på våra lärarutbildningar. Konstruktivistiska förspåkare skulle säkert säga att vad vi ser på svenska matematiklektioner ingalunda är konstruktivism in action. Det må vara delvis sant, men det vi ser kan ändå vara en följd av en konstruktvistisk ansats, som har sitt ursprung i vad som lärs ut på lärarutbildningar. Claesson menar något i stil med att konstruktivismen är en fin tanke, men att få den att fungera i ett klassrum med 25 elever är nästintill omöjligt.

        Min poäng är att det kanske ändå är självständigheten som är ett problem här: att varje elev ska arbeta med problem på sin nivå och själv konstruera sin kunskap, med viss hjälp från läraren. Claesson själv för fram fenomenografin som en teori som möjliggör lärande för varje elev även när läraren interagerar med hela klassen på en gång – en effektivitet konstruktivismen aldrig kan uppnå.

  6. Göran Tullberg skriver:

    Varför talar ni om mattelärare? Det finns ju inga kvar! Mer än hälften av de lärare som undervisar i matematik på högstadiet ÄR INTE MATEMATIKLÄRARE enligt skolverket. Det är slöjdlärare, gymnastiklärare och andra som tvingats ”ta” mattelektioner fast de avskyr matte.

    Ännu sämre är det på låg och mellanstadiet. Inte ens i gymnasiet har vi utbildade mattelärare.

    Varför är det så? Det beror på att lärarna har sämre löner och mycket sämre arbetsförhållanden än andra yrkesgrupper. de flyr lärarbanan och få nya komme till.

    När det sedan gäller hur matematikundervisningen skall se ut om vi har duktiga lärare, så kan jag berätta att det sköter en duktig och erfaren lärare bäst själv. det behöver ni inte fundera på. Han vet vart han vill hän, han känner sina elever – är de duktiga, så kan de arbeta mycket själva. Är de inte det, så behövs det mer insatser av honom eller henne.

    Det finns två krav som står mot varandra: (1) Eleven skall lära för livet. Där finns ingen kateder, utan där får de unga klara sig själva och det skall skolan lära dem. (2) Elever får aldrig misslyckas. Läraren är skyldig att se till att eleverna lyckas.

    • ChristerMagister skriver:

      Man kan tala om mattelärare på två grunder; antingen som utbildade eller som de som faktiskt innehar tjänsten. Oavsett vilken utbildning personen har så är h*n ju faktiskt mattelärare om h*n innehar den tjänsten.

      För övrigt upplever jag samma sak som du, de som kör den här typen av undervisning är inte utbildade och kan helt enkelt inte bättre. Alternativt är de så stressade att de inte orkar med något annat trots att de egentligen vet bättre. Men jag tror inte att många faktiskt ”hyllar denna typ av undervisning”.

  7. Göran Tullberg skriver:

    Christer! I ett läge som detta när vem som helst skall kallas mattelärare utan utbildning och kunskap, utan erfarenhet, så bör vi nog tänka efter om vår skola verkligen fungerar. Vi kallar inte vem som helst läkare och låter denna någon utföra hjärtoperationer. Är lärare och skola så fullständigt utan värde? Hur har det blivit så?

    Jag har sysslat med så många former av undervisning, så jag tror säkert att även den formen som du inte gillar kan fungera om en skicklig lärare står bakom. Om en okunnig lärare undervisar, så är ALLA sätt dåliga. Om en kunnig lärare undervisar, så är ALLA sätt bra!

    Jag kommer ihåg min första dag som lärare. Mina kollegor talade om att en av skolans mattelärare var fantastiskt duktig. Han lyckades alltid, eleverna dyrkade honom.

    Jag lyckades göra mig ett uppdrag så att jag fick komma in på hans lektion för att lämna ett papper. Läraren satt i ett hörn och slumrade, medan hans elever RÄKNADE SJÄLVA med en väldig frenesi. ett par elever diskuterade någon minut och gick sedan fram till läraren för att å hjälp.

    Han talade med dem. Ställde en fråga som eleverna svarade på samtidigt som de lyste upp och sa. ”Var det så enkelt”. Så det var läraren som småsov på lektionen medan eleverna räknade själva. Men bra gick det! Vad säger du om det Christer?

    • ChristerMagister skriver:

      1) det hade antagligen gått ännu bättre med lite mer engagemang.

      2) vi talar antagligen som vanligt om lite olika åldersgrupper. Dessa elever hade troligen bra grundkunskaper.

      3) i grundskolan är det största problemet att eleverna lär sig att räkna utan att egentligen förstå vad de gör. Så länge de får en uppställning med angivet räknesätt går det bra, men problemlösning fixar de inte. Samma sak kan gälla i ditt exempel.

  8. Plura skriver:

    Christer där är vi helt överens. Det är ensamhetens som är problemet och att man inte pratar matematik utan ska rabbla femtielva beräkningar till ingen nytta.

    Dessutom har skolan inte fattat skillnaden mellan individualisering och individuellt lärande.

  9. Göran Tullberg skriver:

    Christer.

    (1) Varför störa elever som var fullt upptagna med att lära sig?

    (2) De kanske hade fått bra grundkunskaper tidigare under lektionen och gladdes åt att kunna tillämpa dem efteråt när jag kom.

    (3) Dessa elever tränade och de visste vad de gjorde. När något blev för svårt, så fick de hjälp genom en elegant ställd fråga som gjorde att de själva löste ”spärren” i deras förståelse.

    Christer! Min erfarenhet säger mig att kunniga, erfarna lärare alltid gör rätt och att okunniga och oerfarna lärare alltid misslyckas. Vi som står utanför vet ofta för litet för att kunna avgöra varför kunniga lärare gör just vad de gör . Dina tre punkter tas ned av mina tre. Det kanske inte är som du tror. ”Ett gott träd bär god frukt”. (Bibeln) En god lärare känns igen på att hn får bra resultat i undervisningen.

    Din lösning att totalt okunniga lärare kommer att lyckas genom att prata strunt och göra bort sig inför eleverna håller inte. Lärarna är odugliga, de kommer att misslyckas vad de än gör.

    Min lösning är att varende okunnig lärare skall bort och ersättas med så kunniga lärare att de långt bättre än dig och andra förstår hur just deras elever skall trivas och få bra resultat.

    Vi behöver expertlärare. Vi behöver inte att okunnigt folk som Björklund och andra talar om hur vi lärare skall undervisa. Jag har sett expertlärare i aktion. Det imponerar. Skolan behöver bättre lärare inte okunnigt folk som talar om hur duktiga lärare skall undervisa!

    • ChristerMagister skriver:

      1) + 2) +3) Ja, var det en tillfällig grej så är det ju ingenting att snacka om. Jag tolkade dig som att det var så han bedrev huvuddelen av sin undervisning. Träna behöver alla göra!

      Nu för du in ytterligare ett begrepp, ”kunniga” lärare. Varken utbildning eller erfarenhet garanterar att läraren är ”kunnig” på att lära ut matematik. Jag har samarbetat med mängder av matematiklärare och sett flera exempel på högt utbildade lärare med lång erfarenhet som har… stora utvecklingsmöjligheter i sin yrkesutövning (för att uttrycka sig milt 😉 ).

      Din lösning att totalt okunniga lärare kommer att lyckas genom att prata strunt och göra bort sig inför eleverna håller inte.”. Vad i jösse namn menar du med det? Det enda som kan tolkas som ”min lösning” i detta är väl att jag tycker att eleverna ska tränas i att ta ansvar för sitt lärande, tänka efter, reflektera och värdera sina resultat i samspel med en lärare; självklart en kunnig sådan.

  10. Bertil Törestad skriver:

    Jag tycker också att duktiga lärare är bättre okunniga och dåliga. Problemen är tv:
    hur vet vi när en lärare är bra?
    när vet en lärare att h*n är dålig?

  11. Göran Tullberg skriver:

    Bertil och Christer! Det är enkelt. Lärarens uppgift är att lära. Lyckas läraren bra med det, så är hn en duktig lärare. Jag skrev det. Omvändningen gäller nog den också, men det är kanske inte 100% säkert,

    Christer! Jag har själv låtit eleverna laborera utan att vara med mina elever i laborationssalen. Jag bara tittade till dem någon gång då och då. Någon lärare blev djupt upprörd över det, men jag fick forskningsanslag just för att se till att eleverna klarade allt ifrån att ta reda på hur problemen löstes genom riskanalyser, planering, instruktioner, ledning till redovisning.

    Jag besökte USAs bästa kemilärare (enligt officiellt utlåtande). Jag kom till Orlando på lördagskvällen. John tyckte vi kunde titta på hans labb. Där fanns fullt med elever som jobbade på sin fritid. När jag frågade dem varför de inte roade sig, så sa de ”Vi roar oss, det finns inget roligare än att forska”

    Jag var med på hans lektion på måndagen. Han hade en formel på tavlan och talade om att det var den föreningen eleverna skulle framställa – inte ett ord om hur det skulle göras. Eleverna stod och satt i en halvcirkel kring honom.

    Han pekade på en elev: ”Question?” Eleven ställde en rad frågor. Han pekade på en ny: ”Comments?” Hela tiden dirigerade han han fram syntesteorier. Undan för undan byggde hans elever upp tre olika teorier hur föreningen skulle framställas på bästa sätt. Han pekade mot labsalen och sa ”Let´s do it!”. Alla ilade ut för att visa att just deras syntes var den bästa.

    Han berättade inte någonting. Han korrigerade ingenting. Om något skulle korrigeras, så fick eleverna klara det själv. Jag lät ibland elever som hade gjort fel planering av en labb göra fel, hellre än att rätta. De sa efteråt när de jobbat som ingenjörer att de lärt mest när jag lät dem göra fel. Hade du medvetet låtit dina elever misslyckas med en halvdags jobb?

    Jag tror att en skicklig lärare får bra resultat och att sättet att nå bra resultat ofta inte kan förstås av outbildat och oerfaret folk.

    • Plura skriver:

      Det är väl det som med ett tjusigare ord kallas för problembaserat lärande.

      Där är skillnaden mellan högpresterande som som ger rätt svar och de som är vetgiriga eller begåvade tar till som ställer frågor och vågar exprementera.

      Skolans problem löses icke med kvackande lärare.

  12. Göran Tullberg skriver:

    ”Din lösning att totalt okunniga lärare kommer att lyckas genom att prata strunt och göra bort sig inför eleverna håller inte.”.(Slut citat) Du har rätt att veta vad jag menade,

    Om läraren var en slöjdlärare som avskydde matte (eller motsvarande – enav den majoritet som vad mattelärare utan varken kunnande eller intresse), så spelade det ingen roll vad han gjorde. Om han ställde sig upp för att berätta hur uppgifterna bäst skulle lösas, så visste hn inte det. Han avslöjade att han själv inte visste hur uppgifterna skulle lösas. Hn gjorde bort sig!

    Oavsett vad han gjorde – katederlektion eller eget arbete, så gick det lika illa. SÅ GÅR DET NÄR MAN LÅTER OKUNNIGT FOLK SPELA MATTELÄRARE.

    Att gå över till katederundervisning med helt odugliga lärare är ingen lösning.

  13. coolaliaz skriver:

    ” ”repetitiv drill” är ingenting jag går igång på direkt…”
    Nej, det gör ingen. Och det är också min poäng, att man behöver med hårt arbete som elev ta sig igenom en del tråkig mängdträning innan förståelsen kommer smygande. Detta hårda arbete är många unga inte beredda att underkasta sig idag. Om du tränar en forehand i tennis kan du inte vara nöjd efter det första lyckade slaget. Slaget måste nötas in. Repetition är som bekant kunskapens moder. I matematiken finns det många små procedurer man behöver ha lärt sig genom repetition innan verktygslådan börjar bli komplett. Att jag skulle förespråka matematikundervisning som endast består av mekanisk drill är ett missförstånd. Vad jag påstod var att drillmomentet för de flesta inte går att hoppa över om man vill lyckas.

    ”Att räkna en massa tal i boken måste väl ge den mest omedelbara belöningen? Man får ju direkt veta, svart på vitt, om man har rätt eller inte.”
    Nej, rätt svar enligt facit är varken omedelbar eller i någon större utsträckning en belöning. Du måste bläddra dig till facit, vilket är segt jämfört med ett move i counter strike där ditt beslut bekräftas inom en bråkdels sekund. Rätt svar i facit är heller inte i synk med en häftig ljudeffekt och animering. Eleven behöver förstå, och framför allt acceptera, att belöningen inte kommer idag, denna vecka, eller kanske ens denna månad.

    • Plura skriver:

      Jag skulle vara så fräck att säga att alla bestick inte är i lådan om man tror att det finns rätt och fel i matematik. Allt beror på om matematiken kan leda fram till att beskriva en verklighet.

      Speciellt viktigt att inse att oavsett vilka matematiskt tänkande Einstein hade kring det svarta hålet räckte det inte. Han och fysikerna har ännu idag inte hittat ”rätt” svar för att kunna förklara det svarta hålets uppkomst matematiskt.

      • Morrica skriver:

        De har inte hittat det som med lekmannatermer beskrivs som ”rätt” svar, det stämmer. Däremot har de hittat en väldig massa av det som allmänt kallas ”fel” svar, dvs de har utforskat en massa vägar och konstaterat att de inte ledde till information om hur svarta hål uppstod – däremot har de upptäckt en massa annat intressant och givande längs de vägarna.

        Det är rätt viktigt att hålla i minnet – bara för att en väg inte leder dit man tänkt sig att den skulle leda innebär det inte automatiskt att promenaden längs vägen var bortslösad tid.

      • Plura skriver:

        Så är det. Det som man kallar ”out of the box”. Att du får sidoeffekter på ditt labburerande är ett väl känt faktum i den naturvetenskapliga forskningen.

        • Morrica skriver:

          Inte bara i den naturvetenskapliga, men det är oftast den disciplinen som är mest känd bland den församlade menigheten. Och det är en mycket viktig effekt, utan den hade vi inte kommit långt här i tillvaron.

  14. ChristerMagister skriver:

    @Göran

    Det du beskriver kallar jag problembaserat lärande och det innebär att eleverna tar ansvar för sitt eget lärande, tänker, reflekterar och värderar sina egna resultat i samspel med läraren. Det är precis ett sådant arbetssätt jag är för. Jag förstår vad du menar och håller med. Det jag inte förstår är hur du har fått det till att ”min lösning” är motsatsen? Att jag propagerar för ”katederundervisning med helt odugliga lärare”? Jag måste ha skrivit 500 inlägg som vänder sig emot ”katederundervisning med helt odugliga lärare”…

    @Coolaliaz

    Vi kan inte täcka in all undervisning i ett par korta kommentarer, det finns säkert tillfällen där ”repetitiv drill” är lämpligt, men generellt sett så tror jag att laborationer med visuellt material och diskussioner som leder till förståelse av vad man egentligen håller på med raderar behovet av mycket av den repetitiva drillen som är så vanlig inom matematikundervisningen. Som jag skrev ovan är det största problemet i grundskolan att eleverna lär sig att räkna utan att egentligen förstå vad de gör. Så länge de får en uppställning med angivet räknesätt går det bra, men problemlösning fixar de inte. De har sysslat för mycket med ”repetitiv drill” av rena räkneuppgifter (2+2, 17-5, 6*8, 18/3) men förstår inte vid vilka tillfällen och på vilket sätt deras räknekunskaper ska överföras till verkliga problem.

    • Trofinios skriver:

      Nja, ett visst mått av drill är nödvändigt. Det är ett felaktigt antagande att tro att om en elev förstår en metod så kan eleven använda metoden utan problem. Så är det ingalunda, drillet skapar en noggrannhet som är central för att inte göra slarvfel. Nu finns det ju visserligen lärare som tycker att förståelsen är det viktiga och att räkna rätt inte är så viktigt. Men båda sakerna är givetvis viktigt. I en reell situation kan en felaktig beräkning få ödesdigra konsekvenser. I undervisningen bör man enligt min mening pendla mellan att utveckla förståelse och att drilla metoder och procedurer. När elever inte behärskar begrepp och metoder leder det till att de vid problemlösning fastnar på grundläggande saker som de förutsätts kunna, vilket medför att den kunskap problemet avsåg att utveckla aldrig hamnar i fokus.

      • ChristerMagister skriver:

        Ja, ett visst mått av drill är nödvändigt, men min erfarenhet liksom alla de senaste undersökningarna säger att det fokuseras alldeles för mycket på drillen och för lite på förståelsen i den svenska skolan. För att fortsätta med generaliseringar så känner jag att ca 80% problembaserat lärande och 20% drill är en rimlig fördelning, men att det i dagens läge ofta är tvärtom.

  15. Göran Tullberg skriver:

    Bra Christer! Vi har egentligen alltid varit överens. Vad jag vänder mig emot är att kommun och stat berövar lärare både inflytande och lön för att själva ta över makten och stoppa pengar i egen ficka. På så sätt får vi den situationen där (enligt skolverket) mer än hälften av alla mattelärare på högstadiet är utbildade i helt andra ämnen.

    De är så oändligt dåliga mattelärare att politiker och andra, som inte vet ett sk-t, talar om för dem hur de skall undervisa. De få lärare som verkligen behärskar sitt yrke måste bli fly förbannade!

    Själv skulle jag inte tåla att nollor försökte tala om för mig hur jag skulle sköta mitt jobb.

    Vad vi behöver är inte att politiker eller rektorer styr pedagogiken, utan att undervisningen får de medel som behövs för att få ”kunniga lärare”. Eftersom det finns de som inte begriper vad kunniga lärare är, så säger jag det en gång till.

    Kunniga lärare får bra resultat – kunniga elever!

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s